Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Urol Oncol ; 41(11): 454.e9-454.e16, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734979

RESUMO

BACKGROUND: There is a clinical need to identify patients with an elevated PSA who would benefit from prostate biopsy due to the presence of clinically significant prostate cancer (CSCaP). We have previously reported the development of the MiCheck® Test for clinically significant prostate cancer. Here, we report MiCheck's further development and incorporation of the Roche Cobas standard clinical chemistry analyzer. OBJECTIVES: To further develop and adapt the MiCheck® Prostate test so it can be performed using a standard clinical chemistry analyzer and characterize its performance using the MiCheck-01 clinical trial sample set. DESIGN, SETTINGS, AND PARTICIPANTS: About 358 patient samples from the MiCheck-01 US clinical trial were used for the development of the MiCheck® Prostate test. These consisted of 46 controls, 137 non-CaP, 62 non-CSCaP, and 113 CSCaP. METHODS: Serum analyte concentrations for cellular growth factors were determined using custom-made Luminex-based R&D Systems multi-analyte kits. Analytes that can also be measured using standard chemistry analyzers were examined for their ability to contribute to an algorithm with high sensitivity for the detection of clinically significant prostate cancer. Samples were then re-measured using a Roche Cobas analyzer for development of the final algorithm. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Logistic regression modeling with Monte Carlo cross-validation was used to identify Human Epidydimal Protein 4 (HE4) as an analyte able to significantly improve the algorithm specificity at 95% sensitivity. A final model was developed using analyte measurements from the Cobas analzyer. RESULTS: The MiCheck® logistic regression model was developed and consisted of PSA, %free PSA, DRE, and HE4. The model differentiated clinically significant cancer from no cancer or not-clinically significant cancer with AUC of 0.85, sensitivity of 95%, and specificity of 50%. Applying the MiCheck® test to all evaluable 358 patients from the MiCheck-01 study demonstrated that up to 50% of unnecessary biopsies could be avoided while delaying diagnosis of only 5.3% of Gleason Score (GS) ≥3+4 cancers, 1.8% of GS≥4+3 cancers and no cancers of GS 8 to 10. CONCLUSIONS: The MiCheck® Prostate test identifies clinically significant prostate cancer with high sensitivity and negative predictive value (NPV). It can be performed in a clinical laboratory using a Roche Cobas clinical chemistry analyzer. The MiCheck® Prostate test could assist in reducing unnecessary prostate biopsies with a marginal number of patients experiencing a delayed diagnosis.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/patologia , Biópsia , Valor Preditivo dos Testes
2.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602058

RESUMO

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Assuntos
Glioblastoma , Glipicanas , Humanos , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons/métodos , Zircônio , Fragmentos de Imunoglobulinas , Linhagem Celular Tumoral
3.
Sci Rep ; 12(1): 18452, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323734

RESUMO

Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/urina , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Pelve
4.
J Nanobiotechnology ; 20(1): 446, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242076

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/terapia , Portadores de Fármacos/uso terapêutico , Vesículas Extracelulares/metabolismo , Humanos , Lipídeos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Prognóstico , Neoplasias Pancreáticas
5.
Anal Methods ; 14(23): 2255-2265, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35612592

RESUMO

Circulating pancreatic ductal adenocarcinoma (PDAC) derived small extracellular vesicles (sEVs) are nano-sized membranous vesicles secreted from PDAC cells and released into surrounding body fluids, such as blood. The use of plasma-derived sEVs for cancer diagnosis is particularly appealing in biomedical research because the sEVs reflect some key features (e.g. genetic and phenotypic status) related to the organs from which they originate. For example, the surface membrane proteins and their expression level on sEVs were reported to be related to the presence and progression of PDAC. However, difficulty in sEVs isolation and lack of ultrasensitive assays for simultaneous analysis of multiple protein biomarkers on patient plasma-derived sEVs hinder their application in the clinic. In our previous study, we have demonstrated the application of magnetic beads (MBs) and surface-enhanced Raman scattering (SERS) assay for phenotypic analysis of cancer cells-derived sEVs using different cell lines. To further demonstrate the clinical application of the proposed assay, we have profiled the sEVs' phenotypes (relative expression of biomarker Glypican 1, EpCAM and CD44V6) of healthy donors and PDAC patients to enable simultaneous detection of multiple surface membrane proteins on plasma-derived sEVs. We discovered that the PDAC sEVs' phenotype signatures had high accuracy for PDAC diagnosis (100%) and showed strong correlation with cancer stages, which were further validated by the imaging techniques (e.g. computerized tomography and magnetic resonance imaging) and also the correlation of cancer stages with CA19-9 (gold standard biomarker) and the sEVs' phenotype signatures. The present proof-of-concept study thus provides an initial investigation of using the proposed SERS assay for PDAC diagnosis and early cancer stage prediction in the clinic.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Humanos , Proteínas de Membrana/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Neoplasias Pancreáticas
6.
Cytometry A ; 101(5): 400-410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34585823

RESUMO

Sensitive and quantitative detection of molecular biomarkers is crucial for the early diagnosis of diseases like metabolic syndrome and cancer. Here we present a single-molecule sandwich immunoassay by imaging the number of single nanoparticles to diagnose aggressive prostate cancer. Our assay employed the photo-stable upconversion nanoparticles (UCNPs) as labels to detect the four types of circulating antigens in blood circulation, including glypican-1 (GPC-1), leptin, osteopontin (OPN), and vascular endothelial growth factor (VEGF), as their serum concentrations indicate aggressive prostate cancer. Under a wide-field microscope, a single UCNP doped with thousands of lanthanide ions can emit sufficiently bright anti-Stokes' luminescence to become quantitatively detectable. By counting every single streptavidin-functionalized UCNP which specifically labeled on each sandwich immune complex across multiple fields of views, we achieved the Limit of Detection (LOD) of 0.0123 ng/ml, 0.2711 ng/ml, 0.1238 ng/ml, and 0.0158 ng/ml for GPC-1, leptin, OPN and VEGF, respectively. The serum circulating level of GPC-1, leptin, OPN, and VEGF in a mixture of 10 healthy normal human serum was 25.17 ng/ml, 18.04 ng/ml, 11.34 ng/ml, and 1.55 ng/ml, which was within the assay dynamic detection range for each analyte. Moreover, a 20% increase of GPC-1 and OPN was observed by spiking the normal human serum with recombinant antigens to confirm the accuracy of the assay. We observed no cross-reactivity among the four biomarker analytes, which eliminates the false positives and enhances the detection accuracy. The developed single upconversion nanoparticle-assisted single-molecule assay suggests its potential in clinical usage for prostate cancer detection by monitoring tiny concentration differences in a panel of serum biomarkers.


Assuntos
Nanopartículas , Neoplasias da Próstata , Biomarcadores , Humanos , Leptina , Masculino , Neoplasias da Próstata/diagnóstico , Fator A de Crescimento do Endotélio Vascular
7.
Ther Adv Med Oncol ; 13: 17588359211022918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646364

RESUMO

Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.

8.
Int J Urol ; 28(12): 1290-1297, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498294

RESUMO

OBJECTIVES: To investigate whether anti-glypican-1 antibody Miltuximab conjugated with near-infrared dye IRDye800CW can be used for in vivo fluorescence imaging of urothelial carcinoma. METHODS: The conjugate, Miltuximab-IRDye800CW, was produced and characterized by size exclusion chromatography and flow cytometry with glypican-1-expressing cells. Balb/c nude mice bearing subcutaneous urothelial carcinoma xenografts were intravenously injected with Miltuximab-IRDye800CW or control IgG-IRDye800CW and imaged daily by fluorescence imaging. After 10 days, tumors and major organs were collected for ex vivo study of the conjugate biodistribution, including its accumulation in the tumor. RESULTS: The intravenous injection of Miltuximab-IRDye800CW to tumor-bearing mice showed its specific accumulation in the tumors with the tumor-to-background ratio of 12.7 ± 2.4, which was significantly higher than that in the control group (4.6 ± 0.9, P < 0.005). The ex vivo imaging was consistent with the in vivo findings, with tumors from the mice injected with Miltuximab-IRDye800CW being significantly brighter than the organs or the control tumors. CONCLUSIONS: The highly specific accumulation and retention of Miltuximab-IRDye800CW in glypican-1-expressing tumors in vivo shows its high potential for fluorescence imaging of urothelial carcinoma and warrants its further investigation toward clinical translation.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Glipicanas , Camundongos , Camundongos Nus , Imagem Molecular , Imagem Óptica , Distribuição Tecidual , Neoplasias da Bexiga Urinária/diagnóstico por imagem
9.
Asia Ocean J Nucl Med Biol ; 9(2): 86-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250138

RESUMO

OBJECTIVES: Miltuximab® is a chimeric antibody targeting Glypican-1 (GPC-1), a cell surface antigen which is overexpressed in solid cancers. Miltuximab® has shown promising safety and efficacy in radioimmunotherapy models of prostate cancer. This first in human study used Miltuximab® radiolabelled with Gallium-67 ([67Ga]Ga-DOTA-Miltuximab®). The primary study endpoint was to establish safety and tolerability of Miltuximab®. Secondary endpoints were biodistribution, tumour targeting and pharmacokinetic analysis. METHODS: Four cohorts of three patients (9 with advanced prostate cancer, 2 with pancreatic and 1 with bladder cancer) were dosed with 1 mg, ~250 MBq of [67Ga]Ga-DOTA-Miltuximab®. Cohort 1 received [67Ga]Ga-DOTA-Miltuximab® alone, while cohorts 2-4 were pre-infused with increasing doses (3.5, 11.5 and 24 mg, respectively) of unlabelled Miltuximab®-DOTA 1 hour prior to [67Ga]Ga-DOTA-Miltuximab®. Safety and tolerability were assessed by clinical and standard laboratory assessments. Patients underwent whole body gamma-camera scans and SPECT/CT scans up to 144 h post-infusion. Total organ radiation exposure was determined by dosimetry of whole-body gamma scans. RESULTS: The dosing regimen was well tolerated, with no drug-related adverse events observed. Liver and spleen uptake of [67Ga]Ga-DOTA-Miltuximab® was observed. Liver uptake was reduced by pre-infusion of unlabelled Miltuximab®-DOTA. Dosimetry analysis showed a favorable exposure profile. [67Ga]Ga-DOTA-Miltuximab® targeting to tumour sites was observed in two prostate cancer patients who had failed enzalutamide treatment. Higher doses of unlabelled antibody achieved lower liver uptake and increased antibody serum half life. CONCLUSIONS: This study is the first in human for Miltuximab® a first in class antibody targeting GPC-1. The trial met its primary endpoint of safety, demonstrating its potential as a safe and tolerable monoclonal antibody. This safety data, together with targeting to tumour lesions and biodistribution information supports the further clinical development of Miltuximab® as a theranostic agent in a planned Phase I human trial.

10.
Asia Ocean J Nucl Med Biol ; 9(1): 1-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33392343

RESUMO

A limitation to the wider introduction of personalised dosimetry in theranostics is the relative paucity of imaging radionuclides with suitable physical and chemical properties to be paired with a long-lived therapeutic partner. As most of the beta-emitting therapeutic radionuclides emit gamma radiation as well they could potentially be used as the imaging radionuclide as well as the therapeutic radionuclide. However, the downsides are that the beta radiation will deliver a significant radiation dose as part of the treatment planning procedure, and the gamma radiation branching ratio is often quite low. Gallium-67 has been in use in nuclear medicine for over 50 years. However, the tremendous interest in gallium imaging in theranostics in recent times has focused on the PET radionuclide gallium-68. In this article it is suggested that the longer-lived gallium-67, which has desirable characteristics for imaging with the gamma camera and a suitably long half-life to match biological timescales for drug uptake and turnover, has been overlooked, in particular, for treatment planning with radionuclide therapy. Gallium-67 could also allow non-PET facilities to participate in theranostic imaging prior to treatment or for monitoring response after therapy. Gallium-67 could play a niche role in the future development of personalised medicine with theranostics.

11.
BMC Cancer ; 20(1): 1214, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302918

RESUMO

BACKGROUND: Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy of Bispecific T cell Engager (BiTE) therapy in PCa, we sought to produce and test the efficacy of a GPC-1 targeted BiTE construct based on the Miltuximab® sequence. Miltuximab® is a clinical stage anti-GPC-1 antibody that has proven safe in first in human trials. METHODS: The single chain variable fragment (scFv) of Miltuximab® and the CD3 binding sequence of Blinatumomab were combined in a standard BiTE format. Binding of the construct to immobilised recombinant CD3 and GPC-1 antigens was assessed by ELISA and BiaCore, and binding to cell surface-expressed antigens was measured by flow cytometry. The ability of MIL-38-CD3 to activate T cells was assessed using in vitro co-culture assays with tumour cell lines of varying GPC-1 expression by measurement of CD69 and CD25 expression, before cytolytic activity was assessed in a similar co-culture. The release of inflammatory cytokines from T cells was measured by ELISA and expression of PD-1 on the T cell surface was measured by flow cytometry. RESULTS: Binding activity of MIL-38-CD3 to both cell surface-expressed and immobilised recombinant GPC-1 and CD3 was retained. MIL-38-CD3 was able to mediate the activation of peripheral blood T cells from healthy individuals, resulting in the release of inflammatory cytokines TNF and IFN-g. Activation was reliant on GPC-1 expression as MIL-38-CD3 mediated only low level T cell activation in the presence of C3 cells (constitutively low GPC-1 expression). Activated T cells were redirected to lyse PCa cell lines PC3 and DU-145 (GPC-1 moderate or high expression, respectively) but could not kill GPC-1 negative Raji cells. The expression of PD-1 was up-regulated on the surface of MIL-38-CD3 activated T cells, suggesting potential for synergy with checkpoint inhibition. CONCLUSIONS: This study reports preclinical findings into the efficacy of targeting GPC-1 in PCa with BiTE construct MIL-38-CD3. We show the specificity and efficacy of the construct, supporting its further preclinical development.


Assuntos
Adenocarcinoma/patologia , Anticorpos Biespecíficos/farmacologia , Glipicanas/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/patologia , Anticorpos de Cadeia Única/farmacologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/imunologia , Adenocarcinoma/imunologia , Anticorpos Biespecíficos/imunologia , Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Complexo CD3/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Glipicanas/antagonistas & inibidores , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Subunidade alfa de Receptor de Interleucina-2/análise , Lectinas Tipo C/análise , Ativação Linfocitária , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias da Próstata/imunologia , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T Citotóxicos/metabolismo
12.
Lab Chip ; 20(24): 4561-4571, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33146648

RESUMO

Polymer microspheres can be fluorescently-coded for multiplexing molecular analysis, but their usage has been limited by fluorescent quenching and bleaching and crowded spectral domain with issues of cross-talks and background interference. Each bioassay step of mixing and separation of analytes and reagents require off-line particle handling procedures. Here, we report that stray magnetic fields can code and decode a collection of hierarchically-assembled beads. By the microfluidic assembling of mesoscopic superparamagnetic cores, diverse and non-volatile stray magnetic field response can be built in the series of microscopic spheres, dumbbells, pears, chains and triangles. Remarkably, the set of stray magnetic field fingerprints are readily discerned by a compact giant magnetoresistance sensor for parallelised screening of multiple distinctive pathogenic DNAs. This opens up the magneto-multiplexing opportunity and could enable streamlined assays to incorporate magneto-mixing, washing, enrichment and separation of analytes. This strategy therefore suggests a potential point-of-care testing solution for efficient kinetic assays.


Assuntos
Campos Magnéticos , Microfluídica , Bioensaio , DNA
13.
Photodiagnosis Photodyn Ther ; 32: 102064, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069874

RESUMO

BACKGROUND: Photoimmunotherapy (PIT) is an emerging method of cancer treatment based on the use of a photosensitizer near-infrared dye IRDye700DX (IR700) conjugated to a monoclonal antibody. The antibody selectively delivers IR700 to cancer cells, which can then be killed after photoexcitation. Glypican-1 (GPC-1) is a novel target expressed specifically in malignant tumors. We aimed to investigate whether anti-GPC-1 antibody Miltuximab® (Glytherix Ltd., Sydney, Australia) can be conjugated with IR700 for PIT of solid tumors. METHODS: The dye IR700 was conjugated with Miltuximab® and characterized by spectrophotometry and flow cytometry. Miltuximab®-IR700-mediated PIT was tested in prostate (DU-145), bladder (C3 and T-24), brain (U-87 and U-251) and ovarian (SKOV-3) cancer cell lines. After 1 h incubation with Miltuximab®-IR700, the cells were washed by PBS and illuminated using a 690-nm light-emitting diode. The viability of the cells was assessed by a CCK-8 viability kit 24 h later. RESULTS: Miltuximab®-IR700-mediated PIT caused 67.3-92.3% reduction in viability of cells with medium-high GPC-1 expression and did not affect the viability of GPC-1-low cells. Cytotoxicity was attributed to the targeted binding of the conjugate with subsequent photoactivation, as the conjugate or light exposure alone had no effect on the cell viability. Miltuximab®-IR700 did not induce cytotoxicity in cells blocked by unconjugated Miltuximab®. CONCLUSIONS: PIT with Miltuximab®-IR700 appears to be highly specific and effective against GPC-1-expressing cancer cells, indicating that it holds promise for an effective and safe treatment of early stage solid tumors or as adjuvant therapy following surgical resection. These findings necessitate further investigation of PIT with Miltuximab®-IR700 in other GPC-1-expressing cancer cell lines in vitro and in vivo in xenograft tumor models.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Linhagem Celular Tumoral , Estudos de Viabilidade , Imunoterapia , Masculino , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
EJNMMI Res ; 10(1): 46, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382920

RESUMO

PURPOSE: Chimeric antibody Miltuximab®, a human IgG1 engineered from the parent antibody MIL-38, is in clinical development for solid tumour therapy. Miltuximab® targets glypican-1 (GPC-1), a cell surface protein involved in tumour growth, which is overexpressed in solid tumours, including prostate cancer (PCa). This study investigated the potential of 89Zr-labelled Miltuximab® as an imaging agent, and 177Lu-labelled Miltuximab® as a targeted beta therapy, in a mouse xenograft model of human prostate cancer. METHODS: Male BALB/c nude mice were inoculated subcutaneously with GPC-1-positive DU-145 PCa cells. In imaging and biodistribution studies, mice bearing palpable tumours received (a) 2.62 MBq [89Zr]Zr-DFO-Miltuximab® followed by PET-CT imaging, or (b) 6 MBq [177Lu]Lu-DOTA-Miltuximab® by Cerenkov imaging, and ex vivo assessment of biodistribution. In an initial tumour efficacy study, mice bearing DU-145 tumours were administered intravenously with 6 MBq [177Lu]Lu-DOTA-Miltuximab® or control DOTA-Miltuximab® then euthanised after 27 days. In a subsequent survival efficacy study, tumour-bearing mice were given 3 or 10 MBq of [177Lu]Lu-DOTA-Miltuximab®, or control, and followed up to 120 days. RESULTS: Antibody accumulation in DU-145 xenografts was detected by PET-CT imaging using [89Zr]Zr-DFO-Miltuximab® and confirmed by Cerenkov luminescence imaging post injection of [177Lu]Lu-DOTA-Miltuximab®. Antibody accumulation was higher (% IA/g) in tumours than other organs across multiple time points. A single injection with 6 MBq of [177Lu]Lu-DOTA-Miltuximab® significantly inhibited tumour growth as compared with DOTA-Miltuximab® (control). In the survival study, mice treated with 10 MBq [177Lu]Lu-DOTA-Miltuximab® had significantly prolonged survival (mean 85 days) versus control (45 days), an effect associated with increased cancer cell apoptosis. Tissue histopathology assessment showed no abnormalities associated with [177Lu]Lu-DOTA-Miltuximab®, in line with other observations of tolerability, including body weight stability. CONCLUSION: These findings demonstrate the potential utility of Miltuximab® as a PET imaging agent ([89Zr]Zr-DFO-Miltuximab®) and a beta therapy ([177Lu]Lu-DOTA-Miltuximab®) in patients with PCa or other GPC-1 expressing tumours.

15.
Urol Oncol ; 38(8): 683.e1-683.e10, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360170

RESUMO

BACKGROUND: Increasing numbers of patients are presenting with aggressive prostate cancer (CaP); therefore, there exists a need to optimally identify these patients pre-biopsy. OBJECTIVES: To compare the accuracy of total prostate specific antigen (PSA), %free PSA, and prostate health index (PHI) to differentiate between patients without CaP, with non-aggressive (Gleason 3 + 3, non-AgCaP) and with aggressive (Gleason ≥ 3 + 4, AgCaP) in a contemporary US population. DESIGN, SETTINGS, AND PARTICIPANTS: Serum samples were collected from 332 US patients scheduled for biopsy due to an elevated age-adjusted PSA. Site and Central biopsy pathologic assessment were performed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Testing of PSA, free PSA, proPSA, and PHI was performed along with central pathology review. Test performance using logistic regression analysis for differentiating CaP from non-CaP as well as non-AgCaP from AgCaP was evaluated. RESULTS AND LIMITATIONS: Central pathology review resulted in 32 upgrades including 14 Gleason 3 + 3 scores being upgraded to AgCaP with final distribution of 148 no-CaP, 64 non-AgCaP, and 120 AgCaP patients. Receiver operator curve (ROC) analysis of the different tests showed that PHI performed best at differentiating CaP from no-CaP subjects (area under the receiver operator curve 0.79). In contrast, the different tests were essentially equivalent in differentiating AgCaP vs. non-AgCaP. CONCLUSIONS: In this recent US study of prebiopsy patients we observed a high proportion of AgCaP patients consistent with previous studies in contemporary US populations. Central Gleason review is recommended for multi-institutional studies comparing biomarkers. PHI was superior to PSA, free PSA, %free PSA, and proPSA in detecting CaP in this population but was not superior at differentiating AgCaP from non-AgCaP.


Assuntos
Nível de Saúde , Antígeno Prostático Específico/sangue , Próstata , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Estados Unidos
16.
Urol Oncol ; 38(8): 683.e11-683.e18, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305266

RESUMO

BACKGROUND: A clinical need exists for a biomarker test to accurately delineate aggressive prostate cancer (AgCaP), and thus better assist clinicians and patients decision-making on whether to proceed to prostate biopsy. OBJECTIVES: To develop a blood test for AgCaP and compare to PSA, %free PSA, proPSA, and prostate health index (PHI) tests. DESIGN, SETTINGS AND PARTICIPANTS: Patient samples from the MiCheck-01 trial were used for development of the MiCheck test. METHODS: Serum analyte concentrations for cellular growth factors were determined using a custom-made Luminex-based R&D Systems multianalyte kit. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Bayesian model averaging and random forest approaches were used to identify clinical factors and growth factors able to distinguish between men with AgCaP (Gleason Score [GS] ≥3+4) from those with non-AgCaP (GS 3+3). Logistic regression and Monte Carlo cross-validation identified variable combinations in order to able to maximize differentiation of AgCaP from non-AgCaP. RESULTS: The MiCheck logistic regression model was developed and comprises the following variables: serum prostate-specific antigen (PSA), patient age, Digital Rectal Exam (DRE) status, Leptin, IL-7, vascular endothelial growth factor, and Glypican-1. The model differentiated AgCaP from non-AgCaP with an area under the curve of 0.83 and was superior to PSA, %free PSA and PHI in all patient groups, regardless of PSA range. Applying the MiCheck test to all evaluable biopsy patients from the MiCheck-01 study demonstrated that up to 30% of biopsies could be avoided while delaying diagnosis of only 6.8% of GS ≥3+4 cancers, 5% of GS ≥4+3 cancers and no cancers of GS 8 or higher. CONCLUSIONS: The MiCheck test outperforms PSA, %free PSA and PHI tests in differentiating AgCaP vs. non-AgCaP patients. The MiCheck test could result in a significant number of biopsies being avoided with a low number of patients experiencing a delayed diagnosis.


Assuntos
Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Testes Hematológicos/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Gradação de Tumores
17.
Adv Exp Med Biol ; 1245: 163-176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266658

RESUMO

Glypican-1 (GPC-1) is a cell surface heparan sulphate proteoglycan that is critical during normal development, but which is not required for normal homoeostasis in the adult. It is, however, overexpressed in a variety of solid tumours and is known to regulate tumour growth, invasion, metastasis and progression, through modulation of tumour cell biology as well as influence on the tumour microenvironment (TME). The role of GPC-1 in the TME and on the tumour cell is broad, as GPC-1 regulates signalling by several growth factors, including FGF, HGF, TGF-ß, Wnt and Hedgehog (Hh). Signalling via these pathways promotes tumour growth and invasive and metastatic ability (drives epithelial-to-mesenchymal transition (EMT)) and influences angiogenesis, affecting both tumour and stromal cells. Broad modulation of the TME via inhibition of GPC-1 may represent a novel therapeutic strategy for inhibition of tumour progression. Here, we discuss the complex role of GPC-1 in tumour cells and the TME, with discussion of potential therapeutic targeting strategies.


Assuntos
Glipicanas/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais
18.
Cancers (Basel) ; 12(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316186

RESUMO

Glioblastoma (GBM) is one of the most aggressive tumors and its 5-year survival is approximately 5%. Fluorescence-guided surgery (FGS) improves the extent of resection and leads to better prognosis. Molecular near-infrared (NIR) imaging appears to outperform conventional FGS, however, novel molecular targets need to be identified in GBM. Proteoglycan glypican-1 (GPC-1) is believed to be such a target as it is highly expressed in GBM and is associated with poor prognosis. We hypothesize that an anti-GPC-1 antibody, Miltuximab®, conjugated with the NIR dye, IRDye800CW (IR800), can specifically accumulate in a GBM xenograft and provide high-contrast in vivo fluorescent imaging in rodents following systemic administration. Miltuximab® was conjugated with IR800 and intravenously administered to BALB/c nude mice bearing a subcutaneous U-87 GBM hind leg xenograft. Specific accumulation of Miltuximab®-IR800 in subcutaneous xenograft tumor was detected 24 h later using an in vivo fluorescence imager. The conjugate did not cause any adverse events in mice and caused strong fluorescence of the tumor with tumor-to-background ratio (TBR) reaching 10.1 ± 2.8. The average TBR over the 10-day period was 5.8 ± 0.6 in mice injected with Miltuximab®-IR800 versus 2.4 ± 0.1 for the control group injected with IgG-IR800 (p = 0.001). Ex vivo assessment of Miltuximab®-IR800 biodistribution confirmed its highly specific accumulation in the tumor. The results of this study confirm that Miltuximab®-IR800 holds promise for intraoperative fluorescence molecular imaging of GBM and warrants further studies.

19.
Exp Eye Res ; 193: 107994, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32147399

RESUMO

Staphylococcus aureus is a common bacterial isolate from cases of microbial keratitis. The virulence factors that contribute to its pathogenicity during this disease have not been fully resolved. The aim of the current study was to examine the effects of the extracellular protease Staphopain A on corneal virulence. Two strains were used, one Staph 38 that gives a high pathology score during keratitis and a less virulent strain ATCC 8325-4. The effect of inhibition of Staphopain by general or specific protease inhibitors on adhesion of strains to fibronectin-coated glass or PMMA was determined. This was followed by an analysis of the effect of Staphopain A on the ability of the bacteria to adhere to and invade corneal epithelial cells. Finally, the effect of inhibiting Staphopain A on pathogenesis in a mouse model of keratitis was studied. Staphopain A increased the adhesion of strains to fibronectin-coated substrata and inhibition of Staphopain A reduced adhesion. The inhibition of Staphopain A by staphostatin A significantly decreased both association with and invasion into human corneal epithelial cells by 15-fold for strain Saur38. Inhibition of Staphopain A significantly reduced the pathology associated with S. aureus keratitis, reducing the infecting numbers of bacteria from 1.8x105 to <1x104 cells/cornea (p ≤ 0.001), significantly reducing the corneal pathology score (p ≤ 0.038) and reducing the numbers of infiltrating PMNs. This study shows that Staphopain increases adhesion and invasion of corneal cells due to increasing fibronectin binding and its inhibition has a significant impact on pathogenicity of S. aureus during keratitis.


Assuntos
Cisteína Endopeptidases/metabolismo , Infecções Oculares Bacterianas/microbiologia , Ceratite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Modelos Animais de Doenças , Infecções Oculares Bacterianas/metabolismo , Infecções Oculares Bacterianas/patologia , Humanos , Ceratite/metabolismo , Ceratite/patologia , Masculino , Camundongos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/patologia
20.
ACS Sens ; 5(3): 764-771, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32134252

RESUMO

Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer.


Assuntos
Vesículas Extracelulares , Neoplasias , Fenótipo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Humanos , Nanoestruturas , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...